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A new frozen-in field w (generalizing vorticity) is constructed for ideal mag- 
netohydrodynamic flow. In conjunction with the frozen-in magnetic field h, this is used 
to obtain a generalized Weber transformation of the MHD equations, expressing the 
velocity as a bilinear form in generalized Weber variables. This expression is also 
obtained from Hamilton's principle of least action, and the canonically conjugate 
Hamiltonian variables for MHD flow are identified. Two alternative energy-type 
variational principles for three-dimensional steady MHD flow are established. Both 
involve a functional R which is the sum of the total energy and another conserved 
functional, the volume integral of a function @ of Lagrangian coordinates. It is shown 
that the first variation S'R vanishes if @ is suitably chosen (as minus a generalized 
Bernoulli integral). Expressions for the second variation S2R are presented. 

1. Introduction 
A variational principle that finds its origins in the work of Kelvin (1910) has been 

formulated and developed, for three-dimensional steady flows of an ideal fluid, by 
Fjortoft (1950) and Arnold (1965a), and has been used in a consideration of the 
stability of two-dimensional flows to finite-amplitude disturbances by Arnold (1 965 b). 
The underlying Hamiltonian structure of the Euler equations plays an important role 
in such an approach, as do any invariants associated with the equations (Holm er al. 
1985; McIntyre & Shepherd 1987; Vladimirov 1987). The Arnold approach to 
problems of stability is summarized by Saffman (1992, Q 14.2). Similar variational 
principles have been developed for the treatment of the stability of magnetostatic 
equilibria of perfectly conducting fluids (Bernstein er al. 1958) and for the basic 
characterization of equilibrium states (Woltjer 1958; Taylor 1974; see also the recent 
monograph of Biskamp 1993, which gives a detailed treatment of these topics). 

There are subtle differences between the Euler flow problem and the magnetostatic 
problem associated with the fact that in the former case it is the curl of the basic 
velocity field (i.e. the vorticity) which is 'frozen' under unsteady Euler evolution, 
whereas in the latter case it is the basic field itself (the magnetic field) which is frozen 
under arbitrary unsteady deformations (the fluid being assumed perfectly conducting). 
These differences have been discussed by Moffatt (1985, 1986) both in relation to the 
problem of characterizing, or determining, steady states, and in relation to the stability 
of these states. 

t Also at: Lavrentyev Institute for Hydrodynamics, 630090 Novosibirsk, Russia. 
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The problems become more acute when the stability of general solutions of the 
MHD equations (with non-zero velocity and magnetic field) is considered. In this 
situation, the magnetic field is still frozen, but the vorticity field is not, the Lorentz 
force being in general rotational. In order to construct a theory of stability of such 
states, it is important to identify the field that replaces vorticity as the frozen-in 
dynamical field, for only then can the counterpart of ‘isovortical’ perturbations be 
identified. 

Earlier theories (Frieman & Rotenberg 1960; Moffatt 1989 ; Friedlander & Vishik 
1990) have considered virtual displacements under which the magnetic field is frozen, 
but have not addressed the problem of identifying the second frozen field which 
(together with the magnetic field) determines the structure and evolution of 
perturbations from a given steady state. The existence of such a field is suggested by 
the cross-helicity invariant (the integrated scalar product of velocity and magnetic 
field) (Woltjer 1958) which is topological in character (Moffatt 1969) and which 
therefore presumably involves the mutual linkage of two frozen fields; one of these is 
magnetic field, but what is the other when the rotational Lorentz force is operative? 

In $2 of this paper, we identify this second field in the following way. First, we define 
a solenoidal vector field m(x, t )  with the property that the rate of change of the flux of 
rn across any material (Lagrangian) surface element 6s is equal to the flux of current 
j across the same element. We then define the vector field 

w = o+V x (h x m), (1.1) 
where o and h are the vorticity and magnetic fields, and we show that w is a frozen- 
in field. 

Recognition of the roles of the fields rn and w allows us in $3 to obtain the 
generalization of Weber’s transformation of the Euler equations to the situation when 
h =I= 0 (equation (3.18) below) and, equivalently, the generalization of Cauchy’s 
formula in terms of w instead of o (equation (3.2)). It also enables us to demonstrate 
($4) that the MHD equations can be obtained from a Hamiltonian variational 
principle, and that the equations have Hamiltonian structure in which (h,g) are 
canonically conjugate variables, where g is a vector potential for the field m. 

In $5 we consider properties of steady solutions of the MHD equations augmented 
by the equation for the auxiliary field m, and in $6 we obtain a general energy 
variational principle for three-dimensional steady MHD flows, which leads to the 
construction of the appropriate second variation of the energy functional R (equations 
(6.13F(6.15)). Finally, in 97, we develop an alternative form of energy variational 
principle that may be used when the unperturbed velocity field has Clebsch 
representation (7.1 I), the streamlines then being closed curves. Again, the second 
variation of energy is calculated by a clear procedure, and presented in a form 
(equation (7.39)) that will be useful in subsequent applications. 

2. The frozen fields of ideal magnetohydrodynamics 
Suppose that an incompressible, inviscid, perfectly conducting fluid of unit density 

is contained in a domain 9 with fixed boundary 3 9 .  Let u(x, t )  be the velocity field in 
the fluid and let h(x, t )  be the magnetic field (in Alfvin velocity units). Then 

V - u = V . h = O  in 9, (2.1) 

n . u = n . h = O  on a9. (2.2) 

and we adopt the natural boundary conditions 
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The fields u and h evolve according to the equations 

Du = u,+u-Vu = -Vp+jxh, 
Lh=h, -Vx(uxh)=O,  

where p(x, t )  is the pressure field, and 

j = V x h  

is the current density. The operator D is the material, or Lagrangian, derivative, the 
equation Df = 0 implying thatfis conserved on particle trajectories. The operator L 
is a form of Lie derivative, the equation Lh = 0 meaning that the h-field is ‘frozen in 
the fluid’, the flux of h through any closed material circuit being conserved. 

Equations (2.3) and (2.4) have three quadratic integral invariants, namely the energy 

the magnetic helicity ,. 

and the cross-helicity 

(Woltjer 1958). Conservation of XM is associated with the invariance of the topology 
of the h-field (Moffatt 1969); likewise, conservation of Xc is associated with the fact 
that, although the flux of vorticity through an arbitrary closed material circuit is not 
conserved (the Lorentz force j x h being in general rotational), the flux of vorticity 
through a closed h-line (which is a particular material circuit) is conserved. 

It will be convenient to adopt the Poisson bracket notation (Arnold 1965) 

{ A , B } ~ V x ( A x B ) = ( B ~ V ) A - ( A ~ V ) B  (2.9) 

(2.10) 

Obviously, {A,B}  = - { B , 4 ;  (2.11) 

( A , { &  C}>+(B, (C ,A} }+(C , (A ,B} }  = 0 (2.12) 

for any two vector fields A ,  B satisfying the solenoidal conditions 

V. A = V - B  = 0. 

moreover, the Jacobi identity 

may be easily verified. With this notation, (2.4) becomes 

h, = (U,h}. (2.13) 

Also, for an arbitrary solenoidal field A ,  

a 
at 

L{h, 4 = - {h, A )  - {u, {h, 4) 

= (h,  A,} + {{u, h}, A }  - {u, {h, A } }  using (2.13) 
= {h ,A , }+{h , {A ,u} }  using (2.11), (2.12) 
= (h, LA}. (2.14) 

Note further that the curl of (2.3) give the equation for vorticity o = curl u in the form 

(2.15) 0, = In, 4 + ( j ,  h}. 



128 V. A .  Vladimirov and H .  K.  MoHatt 

Let us now define an auxiliary dimensionless vector field m(x, t )  by the equations 

Lm E m,-{u,m} = j ,  V - m  = 0. (2.16) 

Equivalently, if @(t)  is any area element moving with the fluid, then 

d 
- (m.&S) = j .SS. 
dt 

(2.17) 

The physical interpretation of m is thus that it is the time-integrated current density 
across such a (Lagrangian) area element. Note that m is not uniquely determined 
unless m(x,O) is specified; however, the properties (2.16) are sufficient for our present 
purpose. 

Let us now define a ‘modified velocity field’ 

v = u+h  x m, (2.18) 

and a corresponding ‘modified vorticity field’ 

Then 
w = V x u = o + { h , m } .  

LW = LW + L{h, m} 
= L o +  {h, Lm} using (2.14) 
= w , - { ~ , ~ } + { h , j }  using (2.16) 

(2.19) 

= 0 using (2.15). (2.20) 

Hence w is now a frozen field; since w reduces to w when h = 0, the field w evidently 
provides the appropriate frozen-field generalization of vorticity when h =k 0. We shall 
therefore describe w as the generalized vorticity field. 

We can now give a new and more transparent interpretation of the cross-helicity Xc. 
For, using (2.18), (2.8) beomes 

r 

(2.21) 

Since both w( = curl u) and h are now frozen fields, their mutual topology is conserved; 
for example, the flux of w through any closed h-line is conserved. By the arguments of 
Moffatt (1969, 1981), Zc provides a measure of the mutual linkage of the fields h and 

Note the trivial solution w = 0 of (2.20). This corresponds to v = Va for some scalar 
field a, or, from (2.18), 

(2.22) 

We may describe this as a generalized potentialflow. 
Finally, note that the essential property Lw = 0 is unaffected if we add to m any field 

m1 satisfying L{h, m,} = {h,  Lm,} = 0. Thus, if m +. m + m, where ml is any solution of 
Lm, =fwith {h,f) = 0, then w + w + w, where w, = {h, m,}, but 

W. 

u = V a + m  x h. 

L(w+ w,) = Lw+Lwl = 0 

and the modified field w + w1 is still therefore frozen. 

3. Generalized Weber transformation 

a = (al,a2,03). The label of the particle passing through x at time t is then 
Suppose now that the fluid particles are labelled by Lagrangian coordinates 

a = a(x, t ) ,  (3.1) 
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(3 -2) 
aa 
at 

DU = -+(u.V)a = 0. and 

The particle paths are given by the inverse function 

x = x(a, t ) ,  

and the initial position of the particle labelled a is 

x(a, 0) = X(a), say. 

A natural choice of label would be a = X ;  however it proves convenient to retain the 
extra freedom represented by the ‘ rearrangement function’ X(a). 

The mapping X(a) + x(a, t )  is induced by the flow 

u = Dx = (~x/at)u,c,n,t., (3 * 5 )  

and is a volume-preserving diffeomorphism with the property 

We shall suppose that the mapping a-+X(a) is also a volume-preserving dif- 
feomorphism, so that 

(3.7) 

also. 
We now seek to transform the equation of motion (1.3) to integrable form, by 

generalization of the argument of Weber (1858) (see, for example, Serrin 1958). First, 
multiply (1.3) by axk/aai, giving 

Now 

Also we have the identity 

Hence, using (2.18), (3.8) may be written 

where 

Integrating along a particle path a = const., we obtain 

ax, - aa 
v k - -  -+bi, 

aa, aa, 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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where the constant of integration is given from the initial condition by 
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(3.14) 

Here b, defined in this way as a function of a = a(x,  t ) ,  also satisfies the condition of 
Lagrangian invariance, 

Db = 0. (3.15) 

In equation (3.13), the terms are best regarded as functions of a and t .  We may however 
immediately convert to Eulerian form by multiplying by i3a,/axj, giving 

v = Va i- b, Va,, (3.16) 

in which now a, b and a are regarded as functions of x and t. Here and subsequently 
we use a mixed vector/suffix notation in which, for example, 

(3.17) 

the repeated suffix k being summed. From (2.18) and (3.16) it follows immediately that 

u = Va + m x h + b, Va,. (3.18) 

Together with the equations 

I Da = Db = 0, 
L h = 0 ,  L m = j  

Da = fu2--p, 
(3.19) 

this provides the required generalization of Weber’s (1 868) transformation of the 
governing equations (2.3)-(2.5). Conversely, by applying the operator D to (3.18) and 
using (3.19), the equation of motion (2.3) is recovered. Equations (3.18) and (3.19) are 
thus equivalent to (2.3)-(2.5). 

The field w is now given by 

w = V x v = Vb, x Va,, (3.20) 

a formula that, in conjunction with Da = Db = 0, again exhibits the frozen-in 
character of w. This result is precisely equivalent to the Cauchy representation 

a x .  aa, 
w,(x,  t )  = wj(a, O)>--. 

aa, axj 
The Eulerian form (3.20) is however more useful in what follows. 

In the special situation when a = X, (3.18) and (3.20) reduce to 

1 u = Va+m x h+ &VX,, 

w=vv,xvx,. 
If moreover we adopt initial conditions 

m(x,O) = 0, u(x,O) = u,(x), 
then u is given by 

the initial conditions for a and X being 

u = Va+m x h+u,,VX,, 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

a(x, 0) = 0, X(x, 0)  = x. (3.25) 

If u,(x) = 0, then (3.24) reduces to the generalized potential flow (2.22). 
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4. Hamiltonian variational principle and canonically conjugate variables 

variational principle. Let 

be the Lagrangian density, and consider the variational problem 

We now show that equations (3.18), (3.19) may be obtained from a Hamiltonian 

Y(u, h) = :(u' - hZ) (4.1) 

subject to the constraints 

V u = 0 (incompressibility), 

Lh = 0 (frozen-in condition for h), 

Da = o (identity ofparticles). J 
Note that Lh = 0 implies that D(V-h) = 0, so that V'h = 0 should be regarded as an 
initial condition, and not as an additional constraint. Introducing Lagrange multipliers 
a(x, t ) ,  g(x, t),  b(x, t), the variational principle (4.2), (4.3) may be written 

6 jg jaT (9 + aV.  u -g - Lh - b a Da) d7 dt = 0, (4.4) 

where now u, h and a are to be varied subject only to boundary conditions 

n.Su=n.Sh=O on a 9 ,  (4.5) 

Su = Sh = 6a = 0 at t = 0, T. (4.6) 

If we carry out the variation of (4.4), and integrate by parts as necessary using (4.5) and 
(4.6), we may then equate to zero the coefficients of the independent variations Su, ah, 
Sa, giving 

and initial and final conditions 

6U: U = Va-h X (v  X g)+ bkvak, (4.7) 

Note that (4.7) is identical with (3.18) provided 

m = Vxg.  (4.10) 

Moreover the curl of (4.8) then gives immediately j = Lrn as in (3.19), and the 
remaining equations of (3.19) are contained in (4.3) and (4.9). The initial condition 
V-h = 0 at t = 0 is satisfied provided 

(4.11) a 
at 
-(V.g) = V.(u x m) at t = 0. 

Canonically conjugate variables 
Consider now the first variation of energy 

(h-Sh+u-SU)dT, (4.12) 
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in which u is given by (4.7), but now the independently varied fields are h, g, b, a, so that 

6u = V 6 c t - ~ h x ( V x g ) - h x ( V x 6 g ) + 6 b k V a k + b k V 6 a k ,  (4.13) 

where Scc is determined so that V-Su = 0. Using the conditions (2.1) and (2.2), (4.12) 
is easily transformed to 

SE = {Shi(h + u x (V x g)), - SgJV x (u x h)],  - Sa,(u. V )  b, + Sb,(u. V )  ail d7. 

(4.14) 
J9 

Hence, from (4.3), (4.8) and (4.9), we have immediately 

I 
} 

ahi/at  = [V x (U x h)], = -SE/Sg,, 

agi/at = hi + [U x (V x g)] ,  = SE/Sh,, 

aa,/at = - (us  V )  a, = - SE/Sbi, 

ab,/at = - (u . V )  b, = SE/Sa,, 

and so (h, g) and (a, b) are canonically conjugate variables. 

(4.15) 

(4.16) 

5. Steady MHD flows 
Consider now steady solutions of (2.3), (2.4) and (2.16) 

and the associated fields 

o = O(X) = V x U, w = W(X) = O + { H , M } .  (5-2) 
The Lagrangian variables a, b are in general unsteady: 

a = A(x,  t) ,  b = B(x, t ) ,  (5.3) 

where 
a 
at 

DoA = DoB = 0, Do = -+ U.V.  

From (2.20), (2.13) and (2.16), we have 

{ U , W } = { U , H } = { U , M } + V X H = O ,  

(5.4) 

and hence u x  w=vr, U X H = V J ,  U X M + H = V K ,  (5.6) 
where Z, J and K may be described as generalized Bernoulli functions. Note that 

vz = u x  o+ u x  [V x ( H x  M ) ]  

= V(P+iUZ) - H x  [V x (UX M ) ]  + u x  [V x ( H x  M ) ]  

from (2.3) and (5.4). Hence it may be shown that 

r=  P + ~ + M . ( u x H ) .  (5.7) 

From ( 5 . 9 ,  U - V I =  U*VJ=O,  (5.8) 
and so the streamlines lie both on surfaces I = const. and J = const., and are therefore 
the curves of intersection of these surfaces. Hence, unless V I  = 0 and/or V J  = 0 in 
some subdomain of the flow, the streamlines are closed curves. By virtue of (5.8) both 
I and J may be expressed as functions of the Lagrangian coordinates 

r = r(A, B), J = J(A, B). (5.9) 
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(There is considerable freedom here since, as noted earlier, B is expressible, via (3.14), 
as a function of A . )  

Now, from (3.20), W = VB,  x VA, ,  so that the first of (5.6) becomes 

U X  (VB, X VA,) = VI(A,  B), 
or equivalently 

aB, ax, 

Clearly, this is satisfied provided 

(5.10) 

(5.11) 

and we may use the freedom in the specification of the fields A and B to ensure that 
these equations are satisfied. 

Finally note that since U - V J  = Ha VJ = 0, the surfaces J = const. contain both U- 
lines and H-lines. In particular, the boundary a 9  is one such surface, i.e. 

J =  J,(const.) on a9. (5.12) 

6. A general energy variational principle for 3D steady MHD flows 

(5.6). We adopt the generalized Weber representation (3.18), so that 
Consider now a steady MHD flow of the form (5. I), (5.2), satisfying the conditions 

U(X) = Va,+Mx H+B,VA, ,  (6.1) 

V . U = O  in 9, n . U = O  on i39. (6.2) 

where a,, is the field that ensures that 

We now consider smooth instantaneous independent variations Sh, Sm, Su, Sb of the 
fields H,  M, A ,  B where Sh, Sm satisfy 

V . 6 m = V . S h = O  in 9, n.Sh=O on a9. (6.3) 

S1u = VS'a + M x Sh + 6m x H +  Sb, V A ,  + Bk VSa,, (6.4) 

Let Slu be the corresponding first variation of U, given from (3.18) by 

where again S1a is chosen so that 

V.S1u=O in 9, n.S1u=O on a9. 

Consider now the functional 

R = E+ @(u, b) dT = [;(u2 + h2) + @(u, b)] d7, (6.5) s, s, 
where @(u, b) is an arbitrary function of a, b satisfying 

D@ = Da*a@/aa+Db*a@/ab = 0. (6.6) 
This condition guarantees that @(u, b) d7, and so R, is invariant under the evolution 
(2.3), (2.4). In the above steady state, R is given by 
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and its first variation is given by 
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SIR = j u .  6lu + w. ah + &a. aQ/aA + 6b. a ~ / a ~ ]  d7. 

Substituting for S'u from (6.4) and rearranging, this becomes 

S'R = I { ( N +  U x  M).6h-(UxN).6m 

+ (- U .  V B +  aQ/8A). Sa + (U-VA + a@/aB).Sb} d7. (6.9) 

If we now choose the arbitrary function @ ( A , @  to be 

@(A, B) = - Z(A, B) (6.10) 

then, by virtue of (5.1 I), the coefficients of the variations 6a, 6b vanish. Moreover, 
using (5.6), (6.9) then reduces to 

S'R = (6h.VK-Sm.VJ)d7 = (K6h.n-Jh.n)dS. I I, 
I, I, 

s 

Hence, since 6h.n = 0 and J = J ,  (const.) on a 2 ,  

6'R = -4 n-6mdS = - J ,  V.6mdr = 0. (6.1 1) 

Hence the functional 

R = [;(d + h2) - Z(U, b)] (6.12) 

is stationary under variations about a steady state U(x),  H(x), provided that m, h, a, 
b are regarded as the independent variables, u being given by (3.18). 

We can now construct the second variation of R under the same conditions; this is 

6'R = {:(6'u2 + ah2) + U .  6% - PZ} d7, s, (6.13) 

where 6% = Va2a + 6m X 6h 4- 6bk v6ak (6.14) 

(Pa being chosen so that Q .  6% = 0, n - 6 ' ~  = 0 on 3 2 ) ,  and 

Sb, 6bk. 
a 2 1  

&a, 66, + ~ 6ai &ak + 2 ___ 28-1 = ___ 
aAi aAk aAi aBk aBi aBk 

a v  a2z 
(6.15) 

According to general principles (Arnold 1965a), the steady solution (U(x), H(x)) is 
stable if 6'R is definite in sign for all variations (6h,6m,6a,6b) satisfying (6.3). It is 
difficult however to use this condition, because of the dependence of the integrand in 
(6.13) on the time-dependent fields A(x ,  t) ,  B(x, t). We seek an alternative simpler form 
of variational principle in the next section. 

7. Alternative form of energy variational principle for 3D steady MHD 
flows 

Let a(x, t )  be a single generalized Lagrangian coordinate satisfying 

Da = 0, (7.1) 
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and let b(x, t )  now be defined by 

b(x, t )  = ( w  . V )  a,  (7.2) 
with w still defined by (2.19). In view of the conditions (2.20) and (7.1), b is also 
constant on particle paths, i.e. 

Db = 0. (7.3) 

In considering steady solutions (5. l), (5.2), we may now suppose that a and b are also 
steady, i.e. 

a = A(x) ,  b = B(x) ,  (7.4) 

where ( U - V ) A  = ( U * V )  B = 0, B = ( W - V )  A .  (7.5) 

These equations imply that the streamlines of the flow U lie both on surfaces A = const. 
and on surfaces B = const., and are therefore the curves of intersection of these two 
families of surfaces. Each streamline is identified by the corresponding pair (A,  B). The 
Bernoulli functions I ,  Jdefined by (5.6) are constant on these streamlines and are hence 
functions of A and B:  

Consider now the first of (5.6): 

Z = I(A, B), J = J(A, B). (7.6) 

U X  W=VZ(A,B)=Z,VA+Z,VB,  (7.7) 

where the suffices A ,  B correspond to partial differentiation. Taking the vector product 
first with V A ,  then with VB,  gives 

BU = ZB V A  x VB,  (( W* V )  B] U = - ZA V A  x VB,  (7.8) 

and hence ( W * V )  B = - I A  B/ZB. (7.9) 

Defining Y(A,  B) such that 

equations (7.8) both become 
y B  = I B /  B, 

U = V A X V Y ,  

(7.10) 

(7.11) 

and the pair (A(x) ,  Y ( x ) )  constitute the generalized stream-function of the flow U. 
We now consider the problem (2.1F(2.5) together with (2.18)-(2.20) and (7.1H7.3). 

(Note that we do not here use the representation (3.18) for u.) These equations still 
admit the energy integral E = const., and, for arbitrary @(a, b), we also have the 
integral 

J9 @(a, b) d7 = const., (7.12) 

by virtue of (7.1), (7.3). Hence we may now construct the invariant functional 

R" = {:(u2 + h2) + @(a, b)} d7, J, (7.13) 

which has steady-state value 

R", = 1, {;( U 2  + H 2 )  + @(A, B)} d7. (7.14) 

Let us now regard u, h, a and m as the independent variable fields which we may subject 
to smooth variations 6u, 6h, 6a, 6m satisfying as usual 

V.Su  = V.6h  = V.6m = 0, (7.15) 
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and n.6u=n.Sh=O on 23. (7.16) 

The fields w and b are now the dependent fields defined by (2.19) and (7.2), and with 
the first and second variations 

6lw = 6 o + V  x (H+6m+6hx M ) ,  

6% = V x (ah x h), 

6% = ( W - V ) 8 a + ( S 1 w . V ) A ,  

(7.17a) 

(7.1 7 b) 

(7.17~) 

S2b = ( ~ ' W * V ) S U + ( S ~ W * V ) A .  (7.17 d )  

We now show that, with an appropriate choice of @(a, b), the steady flow (5.1), (5.6), 
(7.4) is a stationary point of the functional R .  To this end, we calculate the first 
variation 

6'R" = la { U .  6u+ H -  6h + @ A  &a + QB 6%) d7. (7.18) 

The term involving 6% may be treated as follows: 

Ja GB 6% d7 = ja QB[( W -  0) 6a + (V x 6%)- V A ]  d7 

GB( W6u - V A  x 6lu) - n dS- &a( W -  V )  GB d7 + 
(7.19) 

= s,, 
where 

and 

Hence, we obtain 

G = V x (@BVA) = -@BBVA x VB,  

6'u = Su+HxSm+ShxM. 

(7.20) 

(7.21) 

Here, the coefficient of 6u in the volume integral is 

U+ G = B-'(IB - BOBB) V A  x V B  = B-'FB V A  x VB,  

where 

Moreover, the coefficient of 6u in the volume integral is then 

Hence if we choose @ so that F = 0, i.e. 

"(@) = f 
dB % B2' 

(7.23) 

(7.24) 

(7.25) 

(7.26) 

then both coefficients (7.23) and (7.25) vanish. 
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With G = - U, the terms involving Sh and 6m in (7.22) become 

/{(IT+ UxM)-Sh-(UxN) .Sm}d~,  (7.27) 

exactly as in (6.9), and these vanish for the same reason as in $6, using (5.6) and the 
conditions (7.15), (7.16) and J = J ,  (const.) on a9. 

Hence, finally, (7.22) reduces to the surface integral 

6lR" = jag@,(WSa-VA x 6lv)SndS. (7.28) 

We now identify three distinct circumstances in which this surface integral vanishes. 
(i) Obviously SIR" = 0 if @, = 0 on 39, and from (7.24) (with F = 0) this holds 

provided 
@(A, B) = -Z(A, B) on a9. (7.29) 

Now the condition 
n.(VAxVB)=O on 3 9  (7.30) 

implies that, provided n x VA + 0, the fields A and B restricted to a9 are functionally 
related, i.e. 

B = B , ( A ) ,  say, on a9. (7.31) 

Moreover, it is evident from (7.26) that if Q0(A,B) is a solution of (7.26), then 
Go + Bg(A) is also a solution, for arbitrary g(A).  Provided B + 0 on 29, this freedom 
allows us to satisfy (7.29) by choosing 

g ( A )  = -(Z(A, B) + a0(A, B))/B, with B = B,(A). (7.32) 

Hence, provided 
nxVA+O,  B+O for xEa22, (7.33) 

we can always choose @(A, B) so that SIR" = 0. 
(ii) The function A(x)  may be chosen so that A = const. on a9, (i.e. n x VA = 0 at 

all points of a9). We may suppose further that the variation Su(x) of a satisfies the 
boundary condition Sa = 0 on 3 9  (so that the boundary value a = A ,  is maintained in 
the perturbed situation). Then obviously SIR" = 0 again. 

(iii) The streamlines of U(x)  on a22 are closed curves on which A = const. Let T(A) 
be the circulation of v round A = const. (which is conserved since w = curl v is a frozen 
field). From (7.28) 

SIR" = ~a9@,SaW-ndS- QB(n x VA).S1udS. i, (7.34) 

Now @,(A,B), with B = B,(A), is a function of A on a9, and n x VA is parallel to U 
on a9. If 

then the second integral may be treated by first integrating round curves A = const., 
and then integrating over A .  The first operation involves 

n x VA = f ( A )  U/l UI, (7.35) 

Slv-dx = SIT(A). i A=const. 

Hence sufficient conditions for the vanishing of SIR" are 

w. n = 0, In x VAI = AA) ,  61r(A) = 0 

(7.36) 

on a9. (7.37) 
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These conditions are convenient when the flow is either two-dimensional, or 
axisymmetric, or has some comparable symmetry. 

For S2R" we have 
n 

S2R" = J [Su, Sui +ah, ah, + QAA(6a)' + @BB(S1b)2 + 2QAB 6aS'b + 2QB S2b] d7, (7.38) 
a 

where S'w, S2w, Slb, 8-b are presented in the form (7.17). By simple operations and 
using (7.26) we obtain 

2 
2S2k = J,{'(IA Sa+I,S1b)'--Sa(S1w~V)l+ V(8m x Sh))d7 

BIB B 

Q 
( 2 Q B [ 6 ~ S 1 ~ + S m ( S h - V )  A]+>  W(8~)~>-ndS.  

+ s,, B 
(7.39) 

The flow is stable if S2R" is definite in sign for arbitrary choice of Su, ah, Sa, 6m with 
S'w, 6% given by (7.17a, c). 

8. Conclusions 
Starting with the identification of the frozen fields ( h , w )  of ideal magneto- 

hydrodynamics, we have given a systematic development of the transformation 
properties of the MHD equations (thus generalizing the Weber transformation of the 
Euler equations) and of the underlying Hamiltonian structure of these equations. We 
have then considered steady-state properties, and have constructed energy variational 
principles characterizing the steady states. In a subsequent paper, we shall discuss the 
application of these principles to flows and fields with particular symmetries. 

This work was carried out during the tenure by V. A. Vladimirov of a Visiting 
Fellowship at DAMTP, Cambridge, under SERC Research Grant GR/J39748. 
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